

EULER'S METHOD ON TI NSPIRE CAS

euler() program can be found in the Catalog:

From Guide for TI Nspire CAS:

euler()

euler(Expr, Var, depVar, {Var0 VarMax}, depVar0, VarStep
[, eulerStep]) ⇒ matrix

euler(SystemOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, eulerStep]) ⇒ matrix

euler(ListOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, eulerStep]) ⇒ matrix

Uses the Euler method to solve the system

$$\frac{d \, dep \, Var}{d \, Var} = Expr(Var, \, dep \, Var)$$

with $depVar(Var\theta) = depVar\theta$ on the interval $[Var\theta, VarMax]$. Returns a matrix whose first row defines the Var output values and whose second row defines the value of the first solution component at the corresponding Var values, and so on.

 $\it Expr$ is the right-hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is the system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to the order of dependent variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

 $\{Var\theta, VarMax\}$ is a two-element list that tells the function to integrate from $Var\theta$ to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

VarStep is a nonzero number such that $sign(VarStep) = sign(VarMax-Var\theta)$ and solutions are returned at $Var\theta+i\cdot VarStep$ for all i=0,1,2,... such that $Var\theta+i\cdot VarStep$ is in $[var\theta,VarMax]$ (there may not be a solution value at VarMax).

eulerStep is a positive integer (defaults to 1) that defines the number of euler steps between output values. The actual step size used by the euler method is VarStep / eulerStep. Differential equation:

y'=0.001*y*(100-y) and y(0)=10

Catalog >

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

Compare above result with CAS exact solution obtained using deSolve() and seqGen():

deSolve
$$(y'=0.001 \cdot y \cdot (100-y))$$
 and $y(0)=10,t,y)$

$$y = \frac{100 \cdot (1.10517)^t}{(1.10517)^t + 9}.$$

$$\operatorname{seqGen}\left(\frac{100.\cdot(1.10517)^{t}}{(1.10517)^{t}+9.},t,y,\{0,100\}\right) \\
\{10.,10.9367,11.9494,13.0423,14.2189.\right)$$

System of equations:

$$\begin{cases} yI' = -yI + 0.1 \cdot yI \cdot y2 \\ y2 = 3 \cdot y2 - yI \cdot y2 \end{cases}$$
with $vI(0) = 2$ and $v2(0) = 5$

euler
$$\begin{cases}
 -yI + 0.1 \cdot yI \cdot y2 \\
 3 \cdot y2 - yI \cdot y2
\end{cases}, \{yI,y2\}, \{0,5\}, \{2,5\}, 1$$

$$\begin{bmatrix}
 0. & 1. & 2. & 3. & 4. & 5. \\
 2. & 1. & 1. & 3. & 27. & 243. \\
 5. & 10. & 30. & 90. & 90. & -2070.
\end{bmatrix}$$

DETAILED INSTRUCTIONS TO USE EULER ON TI NSPIRE CAS

Example 1

Use Euler's method to find y(4) given that

$$\frac{dy}{dx} = x^2 - 2x$$
, $y(3) = 0$.

From the Catalogue select Euler:

We need to enter the following:

initial x, final x

*leonhard_euler 🗢

euler(Expr, Var, depVar, {Var0, VarMax},

■ *Wizards On

exact(Exit

exp(▶exp expand(

Comparing the approximate solution with the actual solution:

Setting in Notes page:

Example 2

- a) Use Euler method to solve $\frac{dy}{dx} = 0.001y(100 y)$, y(0) = 10 to approximate the value of y at x = 1. Use the step 0.1 and 0.01
- b) Use your CAS calculator to solve the DE and hence find y(1).
- c) Comment on the accuracy of the solution.
- d) Now repeat the above to find y(2).

Solution:

Video how to use Euler's method on TI Nspire:

http://www.youtube.com/watch?v=gvmYniqmSo4

http://www.youtube.com/watch?v=MYI4YzuCj w

Example 3: Use Euler's Method of Numerical Integration with a step size of 0.1 to find y(1) if y' = y - x and y(0) = 2.

The following spread sheet can be designed:

n	x_n	y_n	f(x,y)h	$y_{n+1} = y_n + f(x, y) h$
0	0	2	0.2	2.2
1	0.1	2.2	0.21	2.41
2	0.2	2.41	0.221	2.631
3	0.3	2.631	0.2331	2.864
4	0.4	2.864	0.2464	3.111
5	0.5	3.111	0.2611	3.372
6	0.6	3.372	0.2772	3.649
7	0.7	3.649	0.2949	3.944
8	0.8	3.944	0.3144	4.258
9	0.8	4.258	0.3358	4.59374
10	1.0	4.59374		

Using euler() program on TI Nspire CAS:

Use deSolve and find the percentage error. (Answer: about 2.64%)

Repeat with the step 0.05 (% error about 1.38%.)

Reducing the step size by half reduces the absolute error by roughly a half. However, reducing the step size also increases the amount of computation thereby increasing the potential for round-off error.

Solving graphically:

Plot a DE with initial conditions, check that Euler is selected, then Trace graph

VCAA Exam One 2007

Example 4

- a. Use Euler's method to find y_2 if $\frac{dy}{dx} = \frac{1}{x}$, given that $y_0 = y(1) = 1$ and h = 0.1. Express your answer as a fraction.
- b. Solve the differential equation given in **part a.** to find the value y which is estimated by y_2 . Express your answer in the form $\log_e(a) + b$, where a and b are positive constants.

(2 + 2 = 4 marks)

