
 

 

ANSWERS to Interval of Convergence Exploration. 
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3. Shown in the table above. 

4. The ratio appears to be approaching 0.6. 
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9. Geometric series converges to 
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corresponding term in the geometric series in question 8. Therefore the sum of the absolute 

values in the tail is less than the sum of the geometric series, 0.05184, so 0.05184 is an 

upper bound for the sum of the terms in the tail. 
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15. Radius of convergence is 1. 

 

 


